Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
Journal of Asthma, Allergy and Clinical Immunology ; : 372-384, 2003.
Article in Korean | WPRIM | ID: wpr-20914

ABSTRACT

BACKGROUND: Interleukin (IL)-4 is a pleiotropic cytokine that plays an important role in the pathogenesis of the allergic inflammation and asthma. Upon IL-4 receptor (IL-4R) engagement, a variety of signaling mediators, such as JAK kinases and STAT-6 are activated, leading to induction of IL-4 target gene expression including CD23 and germline C epsilon transcription. The function of a membrane-proximal domain of IL-4Ra, termed ID-1, remains to be characterized to date. OBJECTIVE: To assess whether the ID-1 domain mediates the induction of IL-4 target gene expression in a STAT-6-dependent manner. METHODS: The intracellular region of IL-4Ralpha was translationally fused to the extracellular region of IL-2Rbeta to provide ligand specificity to IL-2. Acidic amino acids and serine residues in the ID-1 domain of the chimeric receptor were substituted by site-directed mutagenesis. These receptor cDNAs were stably transfected to M12.4.1 murine B lymphoma cells. Following IL-2 stimulation, wild type and mutant clones for the ID-1 motif were subjected to FACS. RNA blotting and elecroporetic mobility shift assays to address the levels of CD23, germline C epsilon and STAT-6 inductions, respectively. RESULTS: ID-1 mutant clones were defective in gene induction of CD23 and germline C epsilon in response to IL-2 stimulation, as compared with wildtype clones. Moreover, IL-2-mediated STAT-6 activation was abolished in ID-1 mutant clones. CONCLUSION: These results demonstrate that the ID-1 domain of IL-4Ra is essential to induce IL-4 target gene expression through a STAT-6-dependent pathway.


Subject(s)
Amino Acids, Acidic , Asthma , Clone Cells , DNA, Complementary , Electrophoretic Mobility Shift Assay , Gene Expression , Inflammation , Interleukin-2 , Interleukin-4 Receptor alpha Subunit , Interleukin-4 , Interleukins , Janus Kinases , Lymphoma , Mutagenesis, Site-Directed , Receptors, Interleukin-4 , RNA , Sensitivity and Specificity , Serine
SELECTION OF CITATIONS
SEARCH DETAIL